Search results for "Mpedance spectroscopy"

showing 10 items of 72 documents

Effect of Cu doping on Ba0.95Pb0.05TiO3 electrical properties studied by means of electrical impedance spectroscopy

2019

The ceramics of 0.95BaTiO3–0.05PbTiO3+Xwt.%CuO (X = 0.05, 0.1, 1, 3) were prepared by a solid phase reaction. The structural and morphology studies were carried out by means of X-ray diffraction te...

010302 applied physicsDiffractionPhase reactionMaterials scienceMorphology (linguistics)Analytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsControl and Systems EngineeringCu dopingvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCeramicElectrical and Electronic Engineering0210 nano-technologyElectrical impedance spectroscopyIntegrated Ferroelectrics
researchProduct

Physicochemical characterization of passive films on niobium by admittance and electrochemical impedance spectroscopy studies

2005

An analysis of the electronic properties of amorphous semiconductor-electrolyte junction is reported for thin (D ox < 20 nm) passive film grown on Nb in acidic electrolyte. It will be shown that the theory of amorphous semiconductor-electrolyte junction (a-SC/EI) both in the low band-bending and high band-bending regime is able to explain the admittance data of a-Nb 2 O 5 /El interface in a large range (10 Hz-10 kHz) of frequency and electrode potential values. A modelling of experimental EIS data at different potentials and in the frequency range of 0.1 Hz-100 kHz is presented based on the theory of amorphous semiconductor and compared with the results of the fitting of the admittance data…

AdmittanceChemistryGeneral Chemical EngineeringNiobiumAnalytical chemistrychemistry.chemical_elementphysicochemical characterization; semiconductor-electrolyte junction; electrochemical impedance spectroscopyElectrolyteAmorphous solidDielectric spectroscopysemiconductor-electrolyte junctionelectrochemical impedance spectroscopySettore ING-IND/23 - Chimica Fisica Applicataphysicochemical characterizationElectrochemistryDensity of statesElectrical impedanceElectrode potential
researchProduct

Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma.

2012

Background Previous studies have shown statistically significant differences in electrical impedance between various cutaneous lesions. Electrical impedance spectroscopy (EIS) may therefore be able to aid clinicians in differentiating between benign and malignant skin lesions. Objectives The aim of the study was to develop a classification algorithm to distinguish between melanoma and benign lesions of the skin with a sensitivity of at least 98% and a specificity approximately 20 per cent higher than the diagnostic accuracy of dermatologists. Patients/Methods A total of 1300 lesions were collected in a multicentre, prospective, non-randomized clinical trial from 19 centres around Europe. Al…

AdultMalemedicine.medical_specialtySkin NeoplasmsAdolescentDermatologySensitivity and SpecificityYoung AdultmedicineAtypiaPrevalenceHumansDiagnosis Computer-AssistedElectrical impedance spectroscopyMelanomaAgedAged 80 and overbusiness.industryMelanomaReproducibility of ResultsMiddle Agedmedicine.diseaseDermatologyClinical trialEuropeDielectric SpectroscopyCutaneous melanomaDysplastic nevusFeasibility StudiesFemaleSkin cancerbusinessSkin lesionAlgorithmsSkin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI)
researchProduct

Anodizing and post-anodizing processes to enhance corrosion resistance of Al alloys

2021

In this work the dependence of corrosion resistance of Al alloys AA 2024-T3 on sealing treatments was studied. AA 2024-T3 samples were anodized at 14 V in a bath containing sulfuric and tartaric acids. Anodized samples were sealed with four different treatments: hot water, vapour, hot water with salts and stirred hot water. Electrochemical Impedance Spectroscopy measurements were performed to estimate samples' corrosion resistance in a solution simulating sea water environment. Samples sealed in hot water showed the highest corrosion resistance.

Al alloysSettore ING-IND/23 - Chimica Fisica ApplicataSealingElectrochemical impedance spectroscopyTsa
researchProduct

Characterization of Thin Passive Film-Electrolyte Junctions. The Amorphous Semiconductor (a-SC) Schottky Barrier Approach.

2017

A detailed study of the electronic properties of thin (< 20 nm) anodic TiO2 potentiostatically grown on titanium in two different solutions is presented. The results show that the nature of the anodizing solution affects the electronic properties of the anodic film and in particular the density of electronic state (DOS) distribution. Different DOS were derived from the experimental data analyzed according to the theory of amorphous semiconductor (a-SC) Schottky barrier. It is shown that the usual non-linear and frequency dependent Mott-Schottky plots are in agreement with expected theoretical behaviour of a-SC Schottky barrier. It is shown the importance of the DOS distribution in determini…

Amorphous semiconductorsEngineeringSettore ING-IND/23 - Chimica Fisica Applicatabusiness.industrySchottky barrieranodic TiO2 Thin Passive Film Amorphous Semiconductor Electrochemical Impedance Spectroscopy electronic properties theory of amorphous semiconductor (a-SC) Schottky barrierElectrical engineeringOptoelectronicsElectrolytebusinessCharacterization (materials science)
researchProduct

Photoelectrochemical characterization of anatase-rutile mixed TiO2 nanosponges

2016

This work studies the influence of using hydrodynamic conditions during anodization on the morphology and electrochemical properties of anatase/rutile mixed TiO2 nanotubes (Reynolds number, Re = 0) and nanosponges (Re > 0). To this purpose different techniques were used, such as: microscopy techniques (Field-Emission Scanning Electron Microscope, FE-SEM, and Confocal Laser-Raman Spectroscopy), Electrochemical Impedance Spectroscopy (EIS), Mott Schottky (MS) analysis and photoelectrochemical water splitting tests. This investigation demonstrates that the morphology of TiO2 nanostructures may be greatly affected due to the hydrodynamic conditions and it can be adjusted in order to increase th…

AnataseMaterials scienceScanning electron microscopeAnalytical chemistryEnergy Engineering and Power Technology02 engineering and technologyAnatase/rutile mixed TiO2010402 general chemistry01 natural sciencesINGENIERIA QUIMICAMicroscopyWater splittingSpectroscopyRenewable Energy Sustainability and the EnvironmentAnodizingHidrodinàmica021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesDielectric spectroscopyHydrodynamic conditionsElectroquímicaFuel TechnologyRutileMott-Schottky analysisWater splittingAnodization0210 nano-technologyElectrochemical impedance spectroscopy
researchProduct

Effect of Reynolds number and lithium cation insertion on titanium anodization

2016

This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tu…

AnataseMaterials sciencehydrodynamic conditionsGeneral Chemical EngineeringIntercalation (chemistry)Analytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural scienceswater splittingINGENIERIA QUIMICAsymbols.namesakeElectrochemistryTiO2 nanotubesPhotocurrentelectrochemical impedance spectroscopy (EIS)Titani021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopyField emission microscopyElectroquímicachemistrysymbolsMott-Schottky analysisWater splitting0210 nano-technologyRaman spectroscopyTitanium
researchProduct

Impedance investigation of BaCe0.85Y0.15O3-delta properties for hydrogen conductor in fuel cells

2012

International audience; The influence of the sintering conditions on the electrochemical properties of the proton conducting electrolyte BaCe0.85Y0.15O3-delta (BCY15) and Ni - based BCY15 cermet anode for application in high temperature proton conducting fuel cell are investigated by electrochemical impedance spectroscopy. The results show that at lower sintering temperatures due to the formation of parasitic Y2O3 phase an increase of both the electrolyte and electrode resistances is observed. This effect is strongly reduced by enhancement of the sintering temperature. The obtained BCY15 conductivity (sigma = 2.5x10(-2) S/cm at 700 degrees C) is comparable with that of the best proton condu…

BaCeO3[CHIM.MATE] Chemical Sciences/Material chemistryCeramicsBCY15[ CHIM.MATE ] Chemical Sciences/Material chemistryOxides[CHIM.MATE]Chemical Sciences/Material chemistryProtonElectrochemical impedance spectroscopyAnodeProton-conducting electrolyte
researchProduct

Effect of temperature on the passive state of Alloy 31 in a LiBr solution: Passivation and Mott-Schottky analysis

2015

The passive behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine (700 g/l) at different temperatures using potentiostatic polarisation and Mott-Schottky analysis. Cation vacancies have been found to be the dominant defect in the passive films formed on Alloy 31. An increase in temperature enhanced the generation of cation vacancies at the film/solution interface and raised the steady-state passive current density. The density of defects within the passive film also increased significantly with temperature, making the film more conductive and less protective against localised attacks.

CARBON-STEELAUSTENITIC STAINLESS-STEELBORATE BUFFER SOLUTIONOXIDE-FILMSINGENIERIA QUIMICAElectroquímicaPOINT-DEFECT MODELELECTRONIC-STRUCTUREREPASSIVATION KINETICSELECTROCHEMICAL-IMPEDANCE SPECTROSCOPYPOTENTIAL DISTRIBUTIONACTIVITY-COEFFICIENTSAcer Corrosió
researchProduct

Protonic ceramic fuel cell : elaboration and characterization. Investigation of the BaZr0.8Y0.2O3-d electrolyte by electrochemical impedance spectros…

2021

One of the current global challenges is to find novel, clean and efficient techniques for the energy production. The use of electrochemical cells and hydrogen is one of the solutions. These cells convert the excess energy produced by conventional systems into hydrogen by steam electrolysis. The hydrogen can be stored and transformed into electricity when needed in the fuel cell mode. Among the different electrochemical cells, protonic ceramic electrochemical cells have attracted much attention due to their high efficiency at intermediate temperature (400 – 600 °C). In addition, these systems offer the advantage of not diluting the fuel in electrolysis mode. This thesis work focuses on the e…

ConductivityConductivité[CHIM.MATE] Chemical Sciences/Material chemistryProtonic ceramic fuel cellSpectroscopie d'impédance électrochimiqueSynthèse hydrothermaleHydrothermal synthesisBaZr0.8Y0.2O3-DPile à combustible à céramique protoniqueElectrochemical impedance spectroscopy
researchProduct